2016年3月31日星期四

Tungsten Bronzes Near Infrared Cut-Off Characteristics

The various nanoparticles have been investigating the continuous and new methods to reduce solar heat as it ensures a potentially low-cost and high-productivity solution. Not only does it needs high transmittance of ultraviolet radiation but also achieves complete shielding of infrared solar radiation can be used for solar control windows. In the other word, an effective IR absorbent should have high absorbance as well as a broad working wavelength. A well known the kinds of materials to realize the purpose is the nanoparticles of transparent oxide conductors with heat-ray cut-off effect such as tin doped indium oxide (ITO) and antimony doped tin oxide (ATO). They also are well known to provide highly transparent solar filters to absorb heat-ray by the effect of the plasma vibration of the free electrons, as typically observed in gold and silver nanoparticle solution. However, ITO can only shield the IR wavelength ranges longer than 1500 nm as well as indium is an expensive metal resource. In recent years, for practical application, tungsten bronzes actively have been investigating due to their interesting electro-optics, photochromic, electrochromic, and superconducting properties. Tungsten trioxide (WO3) has a wide band gap of 2.6-2.8 eV5 and is transparent in the visible and NIR ranges. A metallic conductivity and a strong NIR wavelength absorption can be induced when free electrons are introduced into crystals by either decreasing the oxygen content or by adding ternary elements. The oxygen deficiency in tungsten oxides leads to a complex-ordered structure known as the Magneli structure, while the ternary addition of the positive ions leads to the tungsten bronze structure. In other words, tungsten bronzes MxWO3 with doping small ions such as H+, Ag+, Li+, Na+, K+ and Cs+ into WO3 have better optical and electrical properties. It has been reported that the tungsten bronzes with the hexagonal phase are of particular interest in the application of electrochromic devices owing to the relatively high diffusion coefficients of hydrogen ions and metal ions compared with those of the orthorhombic phase and pure WO3.



没有评论:

发表评论