显示标签为“preparation”的博文。显示所有博文
显示标签为“preparation”的博文。显示所有博文

2016年5月26日星期四

Ammonium Tungsten Bronze Nanoparticles Preparation

Tungsten bronze compounds are a series of important inorganic compounds, tungsten ions exist as mixed valence state of W6 +, W5 + and W4 + in such compounds to make a balance in the overall charge. Rich crystal structure, the tunnel structure and this particular valence state lead to its excellent properties, such as electronic and ionic conductivity, superconductivity, optical properties, which has caught widespread research interest in the aspects of the secondary battery, electrochromism, near-infrared absorption and application of chemical sensors.

Currently, methods to synthesize tungsten bronze compounds mainly are the wet chemical method, heat reduction method and thermal decomposition method. Wet chemical method to synthesize ammonium tungsten bronze is to put the starting material in the reducing solvent refluxing for several days, size of the sample obtained by this method is too large, it’s usually between a few to ten micron, and the preparation process requires a long time and high energy consumption. Thermal reduction method is to uniformly mix tungsten oxide, tungsten powder and metal tungstates in proper proportions, then heated in a vacuum or under an inert atmosphere, the reaction temperature is usually about 1000 ℃, and remove unreacted impurities after the reaction is completed. Since the thermal stability of ammonium tungsten bronze difference is poor and decomposition temperature (300 ℃) is lower than the synthesis temperature, the thermal reduction method can not be used to synthesize ammonium tungsten bronze. The thermal decomposition method to synthesize ammonium tungsten bronze is to heat and decompose ammonium paratungstate in a reducing atmosphere (H2 or a mixed gas of H2, Ar, etc.), the size of the resulting sample is too large, and this method can not obtain completely pure phase ammonium tungsten bronze, ammonium content in sample is too low and easy to excessive decomposed into tungsten oxide.

The pure phase ammonium tungsten bronze nano-powder can not be directly obtained in current study, so usually break the large micron-sized particles obtained into small particles by milling, but these compounds are easily to be oxidized and lost live and decompose in the milling process, also accompanied by crystallization performance degradation. For the above problems, some scholars have proposed a synthesis method to directly synthesize ammonium tungsten bronze powder with controllable particle size.

Preparation of reduced state ammonium tungsten bronze nanoparticles: dissolve 0.01~1g tungsten hexachloride or tungsten tetrachloride in 20~40mL oleic acid solution, and stirred to obtain homogeneous solution, then added 4~30mL oleylamine, and mix evenly, move to supercritical reaction kettle, crystallization reaction at 150~350 ℃ for 0.5~48 hours, the powder samples were centrifuged and washed after reaction, dry under vacuum at 40~250 ℃ for 1~12 hours, and the reduced state ammonium tungsten bronze nanoparticles are obtained, the mole fraction of ammonium group in the composition is between 0.2~0.3. In addition, samples obtained by this method have strong near-infrared absorption ability, the film containing nanoparticles can effectively shield the near infrared rays of 780 ~ 2500nm and maintain high visible light transmittance.

It was proposed a synthesis method to directly synthesize ammonium tungsten bronze powder with controllable particle size since the pure ammonium tungsten bronze nano-powder can not be directly obtained in current study.


If you have any interest in our products, please feel free to contact us by email: sales@chinatungsten.comsales@xiamentungsten.com or by telephone:+86 592 5129696.

2015年7月20日星期一

Reactions of Sodium Tungstate Preparation

Sodium tungstate is the inorganic compound with the formula Na2WO4. This white, water-soluble solid is the sodium salt of tungstic acid. It is useful as a source of tungsten for chemical synthesis. It is an intermediate in the conversion of tungsten ores to the metal.

Treatment of sodium tungstate with hydrochloric acid gives the trioxide:

    Na2WO4 + 2 HCl → WO3 + 2 NaCl + H2O

This reaction can be reversed using aqueous solution of sodium hydroxide.


Preparation and Structure of Sodium Tungstate

The predominant route to this salt is the extraction of tungsten ores, almost all of which are tungstates. Thus, the ores are treated with a base to give sodium tungstate, as illustrated in the case of wolframite:

Fe/MnWO4 + 2 NaOH + 2 H2O → Na2WO4•2H2O + Fe/Mn(OH)2

Scheelite is treated similarly using sodium carbonate.

Sodium tungstate can also be produced by treating tungsten carbide with a mixture of sodium nitrate and sodium hydroxide in a fusion process which overcomes the high exothermicity of the reaction involved.

Several polymorphs of sodium tungstate are known, three at only one atmosphere pressure. They feature tetrahedral orthotungstate dianions but differ in the packing motif. The WO42− anion adopts a structure like sulfate (SO42−).